Discussion
In this study, we used comprehensive clinical and registry data to develop a model for predicting readmission among older patients. The model showed good calibration and higher discrimination (AUC=0.70) than comparable prediction models related to non-selected older medical patients,10–14 and AUC just reached acceptable level of discrimination. Performance measures were consistent in the bootstrap analysis and thus did not indicate data overfitting. The discriminative capacity of the model is crucial since the model aimed to distinguish precisely those patients with a higher readmission risk.37 In the initial literature search, only one study showed better discriminative ability (AUC=0.82) in prediction of acute all-cause 30-day readmission among older medical patients.15 This previous model included predictors regarding sociodemographic and health-related factors, and focused on a group of patients discharged from both in-hospital and specialist outpatient clinics. However, prediction of readmission among the diverse group of older medical patients is complex, and previous prediction models with exclusive focus on older patients discharged from hospital were based on administrative hospital data and tested only a few social factors, such as use of healthcare security and education.10 12–14 In the current study, we have included various candidate predictors related to social factors, such as educational level, income, children living close by, and having a spouse with or without comorbidity. However, the final model in this study revealed that educational level was the strongest social candidate predictor of readmission. There is no consensus on how to measure the impact of social factors on health among older patient groups.38 Some studies include different social factors like healthcare insurance and ethnicity, which might be less relevant in a setting with universal tax-paid healthcare,39 and relatively low ethnic diversity,40 as in Denmark. Still, this study indicated social factors, in terms of educational level, have a crucial influence on risk of readmission, which should be acknowledged both in future studies of readmission risk prediction and in the design of readmission prevention interventions for older patients. Previous research indicates that differences in healthcare utilisation between educational groups can be associated with differences in the applied acute care and differences in patient ability to manage care.6 41 Yet, more knowledge is needed. Further, results showed that demographic, organisational and health-related factors as well as social factor need to be emphasised in clinical practice when identifying older medical patients at risk of readmission.
In addition, we have found that clinical screening based on one simple question related to the potential for cognitive problems (“does the patient’s behaviour indicate cognitive problems (not diagnosed dementia)?”) strongly contributed to the prediction of readmission; hence, clinically assessed cognitive problems not related to dementia more than doubled the risk of readmission. This clinical observation seemed to have an even stronger influence than previous studies using diagnosed cognitive problems as a predictor, thus indicating the importance of bedside clinical assessment. This result might reflect both the importance of clinical observations related to prediction of risk and that cognitive problems can be associated with a number of conditions including delirium. However, our data does not allow for further investigation into this predictor.
Studies have highlighted that readmission risk is influenced by both comorbidities treated outside hospital in the primary healthcare sector and organisational factors.8 42 43 To our knowledge, prediction studies have not previously included chronic condition information from non-hospital data sources. We found that three different disease categories based on prescribed medications predicted readmission. Older patients who suffer from glaucoma potentially struggle with impaired vision;44 yet, previous studies show inconsistent results on whether impaired vision increases risk of readmission.27 28 Potentially, the impact of glaucoma is related to other factors.44 We have not been able to find literature on the general outcomes of thyroid disease or thyroid disease therapy; yet, a meta-analysis has shown that the thyroid disease hypothyroidism is associated with increased all-cause mortality and hospitalisation of patients with heart failure.45 Likewise, studies have reported that acid-related disorders are associated with specific comorbidities and that medication is in itself associated with increased risk of readmission.
Predictors of readmission among older medical patients should be acknowledged when planning discharge and post-discharge care. Various interventions have been described and tested to prevent readmissions and increase quality of care in the transition from hospital to home.46
Study strengths and limitations
From our view, a strength of this study is that the clinical data were obtained and provided information not covered by the administrative hospital data. Further, our dataset included comprehensive register data that allowed us to investigate demographic, social and organisational candidate predictors, and it provided a low level of missing observations. Additionally, we performed internal validation in the form of bootstrapping in order to account for model overfitting or uncertainty.
The population group was not very large (n=770 patients), and due to an incomplete list of general practitioners, we had 12% missing observations for distance between general practitioner clinic and patient address. Likewise, in 7% of the included patients, we lacked information about their educational level. As previously stated, the screening data included in this analysis were obtained as part of a randomised controlled intervention study using risk of readmission as main outcome.4 The study did not show any effect of the tested intervention on readmissions; however, we cannot rule out that the risk of readmissions was changed for some of the 149 patients who received the intervention. We did not publish a study protocol prior to the data analysis phase, as recommended by TRIPOD, and despite bootstrap analysis showing good internal validity, the model should be tested on an external population of older medical patients.