Postoperative analgesia for Enhanced recovery in Joint replacement: Audit of a new electronic prescribing order set

Jonathan Wright, Benjamin Cullinger, Ian Bacarese-Hamilton
Whittington Hospital, London

Abstract

Enhanced recovery in joint replacement has been shown to reduce length of inpatient stay, reduce re-admission rates, and can improve early functional recovery. Postoperative analgesia is an important component of the group of interventions required to form a holistic enhanced recovery protocol. The introduction of electronic prescribing provides the opportunity to introduce some standardisation, where clinically appropriate, in the prescription of an evidence based postoperative analgesia protocol.

Enhanced recovery following joint replacement has been used at this institution since 2011. An order set for the postoperative analgesia protocol was introduced to the in house electronic prescribing system in August 2014 (JAC Medicines Management; JAC Computer Services Ltd., Basildon, UK). An audit was performed to follow the effect of the new system on compliance with the postoperative analgesia guidelines.

Improvements were seen following introduction of the electronic prescribing protocol in all criteria of the guideline with a demonstrated improvement in overall compliance from 0% to 35% in the first loop, with subsequent audit showing further improvement to 59% compliance.

Use of an embedded order set within an electronic prescribing system has demonstrated improved compliance with an enhanced recovery protocol. This ensures that the correct evidence based protocol is available to guide the junior clinician at the point of care, when the medication is being prescribed.

Problem

Postoperative pain is a complex symptom that requires a variety of different treatment modalities with the aim of enhancing efficacy of pain control whilst also minimising side effects (for example nausea, vomiting, constipation, and urinary retention). With this in mind, the Whittington Hospital (London, UK) pain team developed a multimodal analgesic protocol for patients undergoing elective total hip and knee replacements as part of the enhanced recovery programme.

Anecdotal evidence suggested that utilisation of this agreed protocol was poor, partly due to lack of awareness of the details of the protocol among those members of the team prescribing the analgesia. We set out to determine if this was indeed the case and if the utilisation of an electronic prescribing order set would enhance the uptake of a multimodal pain management protocol.

Baseline measurement

For the baseline measurement in this quality improvement project data was collected prospectively for all arthroplasty patients who underwent surgery in a week at the beginning of July 2014.

The in house electronic prescribing system was interrogated to assess the prescription of postoperative analgesia by doctors from the preoperative period through to discharge. Patient notes and blood results were reviewed to check for any reason for deviation from the standard protocol, according to the hospital guidelines (e.g. drug intolerances/allergies, use of non steroidal anti-inflammatory drugs in patients with renal impairment). If no reason for changing the prescribed medications from the protocol was given, it was assumed that there was no valid clinical reason.

27 arthroplasty patients were included with no exclusions. This

Use of Enhanced recovery following total joint arthroplasty has been shown to result in improved patient satisfaction[2], reduced length of stay[3] without increased readmission rates[4], and reduced mortality rates[5].

Multimodal analgesia is aimed at effective pain control while minimising opiate requirements and reduced associated side effects, while allowing the patient to participate with physical rehabilitation [6]. The local protocol used at our centre has been produced over a period of time by consultant anaesthetists and members of the pain team.

Background

Enhanced recovery after surgery is a concept involving a number of interventions aimed at reducing perioperative physiological stress and speeding the patient's recovery postoperatively. The use of preoperative education, modern anaesthetic techniques, multimodal pain management, and postoperative rehabilitation protocols each play a role in this technique. It has been used in several different surgical specialties demonstrating reduced length of stay[1].
cycle demonstrated that the number of patients who received all medications according to the enhanced recovery protocol was 0/27 in the baseline measurement. This clearly indicated that there was scope for improvement in compliance with the local postoperative analgesia protocol.

See supplementary file: ds5600.pdf - "Post operative analgesia protocol for enhanced recovery"

Results

A repeat of the data collection was performed initially in October 2014. This included all patients undergoing arthroplasty over the period of one month (n=26) with the exclusion of one patient with chronic regional pain syndrome and sickle cell disease with complicated analgesic needs that the standard protocol could not effectively address. The total compliance with all parts of the protocol improved from 0% to 34.6% (p<0.001, Fishers exact test). Greater improvements were seen with compliance to individual parts of the protocol: ibuprofen (4% pre intervention vs 58% post intervention), gabapentin (18% vs 73%), modified release morphine sulphate (44% vs 73%), and weak opioid (26% vs 77%) prescriptions all individually showed good improvements. Paracetamol was universally well prescribed (100% in both measurements). Smaller improvements were made in the timing of conversion to PRN analgesia (89% to 96%).

Following dissemination of the initial results and further education of the team the second data collection period was performed in February 2015. This continued to show improvement with the total compliance improving to 58%. Similarly there were still improvements in parts of the protocol: gabapentin (96%), modified release morphine sulphate (96%), weak opioid (100%), conversion to PRN analgesia (100%). Despite these good improvements, the prescription of ibuprofen (58%) according to protocol limited the compliance improving to 58%. Similarly there were still improvements in parts of the protocol: ibuprofen (4% pre intervention vs 58% post intervention), gabapentin (18% vs 73%), modified release morphine sulphate (44% vs 73%), and weak opioid (26% vs 77%) prescriptions all individually showed good improvements. Paracetamol was universally well prescribed (100% in both measurements). Smaller improvements were made in the timing of conversion to PRN analgesia (89% to 96%).

Lessons and limitations

Our results demonstrated a clear improvement in the rates of compliance with the postoperative analgesia protocol following introduction of the electronic order set. The use of order sets in an electronic prescribing system is relatively straightforward to learn and we believe that they are invaluable in situations where more complex medication regimes may be used, particularly when it is specific to a department (such as in rapid recovery following joint replacement) and a new member of the team may not have familiarity with such a protocol. This should be sustainable within the department and could be translatable to other specialties where suitable.
A key lesson we found is that the change of junior staff within a department, without clear education at the time of induction can lead to incomplete uptake of a protocol. This was demonstrated by the further improvements we achieved following presentation of the initial results and re-education of the groups involved. The use of order sets forms part of the hospital induction and training on the prescribing system and education on the particular protocol is included in the departmental induction to ensure the improved compliance continues.

The numbers of this audit are not large, but reflect an average monthly turnover of elective hip and knee surgery patients within a district general hospital and the improvements are clear. There are limitations with the use of relatively short term data collection as they may miss data with team members away on leave or on night shifts.

We noted that while in the last cycle there were further good improvements, the total compliance was limited by the correct prescription of ibuprofen. It is not clear if this is due to a contraindication that was not recorded or evident from the notes, or if the protocol was not followed for another reason. With continued audit cycles to monitor compliance, this particular question could be investigated further.

As there is no additional cost in adding an order set to the electronic prescribing system this intervention is a cost effective way of improving compliance with a protocol.

Conclusion

Use of an electronic prescribing order set for postoperative analgesia in arthroplasty patients within an enhanced recovery programme demonstrates significantly improved compliance with the prescribing protocol. This is a technique which was generally well received, by the doctors using the system, as a means of easily utilising a relatively complicated protocol which may not be easily recalled. It may have a role for use within other hospitals or specialties where electronic prescribing is used.

References

Declaration of interests

Nothing to declare

Acknowledgements

The Whittington hospital pharmacy team, with particular thanks to Rajesh Babu (JAC pharmacist), and the Whittington hospital pain team.

Ethical approval

This project was performed following approval from the local audit and clinical governance department.
Improvements in compliance following introduction of electronic prescribing order set

- Paracetamol: 100% compliance before and after electronic order set, stable after second loop closure.
- Ibuprofen: 50% compliance before, 60% after, 70% after second loop closure.
- Gabapentin: 40% compliance before, 50% after, 60% after second loop closure.
- MST: 80% compliance before, 90% after, 95% after second loop closure.
- Weak Opioid: 20% compliance before, 30% after, 40% after second loop closure.
- PRN Analgesia: 90% compliance before, 100% after, 100% after second loop closure.
- Complete: 80% compliance before, 90% after, 95% after second loop closure.

Legend:
- Before electronic order set
- After electronic order set
- After second loop closure
PRESCRIBING GUIDE: Analgesia for major joint replacement surgery (hip and knee replacements)

PRE-OPERATIVELY (1-2 hours prior to anaesthesia):
- Paracetamol 1g or 2g (see overleaf)
- Gabapentin 300mg or 600mg
- Consider Ibuprofen if no contraindications (see overleaf)

<table>
<thead>
<tr>
<th>Drug name and cautions [please see overleaf for further guidance]</th>
<th>Post-op (on ward)</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4 onwards</th>
<th>Discharge analgesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular analgesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paracetamol</td>
<td>1g QDS</td>
<td>1g QDS</td>
<td>1g QDS</td>
<td>1g QDS</td>
<td>1g QDS</td>
<td>1g QDS</td>
</tr>
<tr>
<td>Ibuprofen [if no contraindications – see overleaf]</td>
<td>400mg at 22:00</td>
<td>400mg TDS</td>
<td>400mg TDS</td>
<td>400mg – LAST dose at 08:00 then STOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabapentin [caution in renal failure – see overleaf]</td>
<td>300mg or 600mg at 22:00</td>
<td>300mg or 600mg BD</td>
<td>300mg or 600mg BD</td>
<td>300mg or 600mg – LAST dose at 08:00 then STOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MST [caution in renal failure and the elderly – see overleaf]</td>
<td>10mg or 20mg - FIRST dose at 22:00</td>
<td>10mg or 20mg BD</td>
<td>10mg or 20mg - LAST dose at 10:00 then STOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak opioid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydrocodeine 30mg QDS OR Tramadol 50-100mg QDS - FIRST dose at 18:00</td>
<td></td>
<td></td>
<td></td>
<td>Dihydrocodeine 30mg QDS OR Tramadol 50-100mg QDS</td>
<td>Dihydrocodeine 30mg QDS OR Tramadol 50-100mg QDS</td>
<td>Dihydrocodeine 30mg QDS OR Tramadol 50-100mg QDS</td>
</tr>
<tr>
<td>PRN analgesia</td>
<td>Oramorph 10-20mg PRN 2-hourly</td>
</tr>
<tr>
<td>Anti-emetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As per Post-Operative Nausea and Vomiting Guidelines:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line – Ondansetron, Second line – Cyclizine, Third line – Prochlorperazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table is intended as a guide – when prescribing, please take individual patient factors into consideration – see overleaf.

If possible, please document any variation from above and reason for variation as this is helpful for audit purposes.

Pain Team: Bleep 2688 (8am – 6pm Monday to Friday) or Bleep 3301 (on-call anaesthetist) out of hours
Notes and additional guidance

The table overleaf is intended as a guide – when prescribing, please take individual patient factors into consideration.

Please exercise caution in:
- Elderly patients – dose reductions or alternative drugs may be required – see below.
- Patients with renal impairment (eGFR <30) – dose reduction or alternative drugs may be required – see below.
- Patients with low BMI (<20) – dose reduction may be required.
- Patients with low body weight (<50kg) – dose reduction may be required.

Paracetamol loading dose:
Please see “Paracetamol oral loading” guideline on Intranet – up to 2g orally can be given pre-operatively according to weight if no other paracetamol has been given that day.

Gabapentin dosing:
Dose reduction in renal impairment:
eGFR >80 ml/minute – no dose reduction needed
eGFR 50-80 ml/minute – reduce dose to 300mg BD
eGFR 30-50 ml/minute – reduce dose to 100mg BD
eGFR < 30 ml/minute – do not prescribe gabapentin

Morphine dosing:
No exact guide or cut-off for dosing – please use clinical judgement based on weight, age and general health.
Consider lower dose of MST and oramorph in the elderly.
If eGFR <30, consider oxycodone as an alternative to morphine.

Oxycodone dosing:
Oxycodone can be considered as an alternative to morphine, e.g. in renal impairment. The dose is half that of morphine.
Oxycontin (modified release oxycodone) can be used instead of MST – the dose would be 5mg or 10mg BD for 4 doses.
Oxynorm (immediate release oxycodone) can be used instead of oramorph – the dose would be 5 to 10mg PRN 2-hourly.

Anti-emetics:
Please see “Post-operative nausea and vomiting” guideline on Intranet – PRN anti-emetics initially, but change to regular if required.