PATIENT INVENTORY: FROM QUALITY IMPROVEMENT TO SCIENTIFIC JOURNALS

Søren Valgreen Knudsen. Danish Center for Health Services Research and Psychiatry Region North Denmark

10.1136/bmjjoq-2023-ISS.8

Introduction Countless quality improvement projects are conducted internationally each year, but only a few of them are translated into scientific literature. This is problematic, as a core element of the improvement model is to map best practices and previous experiences so that new projects do not always have to start from scratch. In this presentation, a quality improvement project is presented, and the Patient Inventory method is introduced, which can be a useful tool for identifying inefficiencies in patient pathways and for implementing targeted quality improvement initiatives.

High-quality treatment and care for patients require appropriate management of patient pathways. However, patient pathways are often challenged by breakdowns in coordination, continuity, and communication between healthcare professionals and across sectors. With the increasing number of people needing treatment, hospital capacity is also challenged, compromising the quality of care and treatment and resulting in inappropriate use of resources. Therefore, it is important to identify inefficiencies in patient pathways so that targeted quality improvement initiatives can be implemented. The Patient Inventory is a useful tool for this purpose.

Methods The Patient Inventory tool is a specialized clinical audit that provides a structured basis for assessing the quality of patient pathways at the department or hospital level and between sectors. The method asks whether patients are treated in the right place, at the right level, at the right time, and with the right pathway.

Results The presentation shows results from a specific quality project based on the Patient Inventory method and how the presenters published the results in a recognized journal. The presenters hope that this method and their experience in publishing their results can inspire others to use the Patient Inventory method to improve patient care and to disseminate their findings in scientific journals.

REFERENCES

IMPROVE BETTER BY SCRUM SPRINT IN HEALTHCARE. AN EVALUATION OF THE 24-HOUR SCRUM SPRINT METHOD

Femmy Meenhorst. Usselland Hospital, Albert Schweitzer Hospital

10.1136/bmjjoq-2023-ISS.9

Introduction The quality policy of the Albert Schweitzer Hospital’s radiology department is geared towards continuous improvement and is based on quality measurement results. The number of improvements of the radiology department is currently low compared to the number of quality measurements, and the throughput time of the improvements is long. The purpose of this quality improvement project was to investigate whether the 24-hour scrum sprint method is an effective method to increase the number of completed improvements, and decrease throughput time in the radiology department.

Methods The 24-hour scrum sprint method is being implemented and evaluated in Albert Schweitzer Hospital’s radiology department (intervention group). The chosen study design is an interrupted time series with a control group. Two outcomes are measured for the effect evaluation. The first outcome measure is the absolute number of completed improvements per quarter. The second outcome measure is the percentage of improvement action completed in 90 days. The ratio is calculated using a negative binomial regression analysis and a logical regression analysis. A process evaluation was also conducted engaging a focus group to evaluate the implementation trajectory and the intervention.

Results Having implemented the 24-hour scrum sprint, 2.5 times as many improvements were completed in the radiology department than before implementation.

With a rate ratio of 2.47 (p<0.001) there is a significant difference. In the control group there was a reduction in the number of improvement actions. This difference is not significant (rate ratio of 0.87; p = 0.82). The percentage of actions completed within 90 days on radiology is 18% before implementation and 65% after implementation. This difference is significant (odds ratio = 8.30 and p<0.001). In the control group there is no significant difference in the post-intervention period compared to the pre-intervention period (odds ratio 0.99; p=0.98). The process evaluation reveals that improvement using the 24-hours scrum sprint method was experienced positively by the participants.

The effect evaluation shows a significant difference in the number of improvement actions and throughput time in the intervention group. The 24-hour scrum sprint method could be an effective method to improve on the radiology department. In order to determine subsequent research is required with a longer follow-up, additional post-intervention measurement moments and a rating of the content and scope of the improvements.

REFERENCES